Economic Growth and Environmental Pollution in Brunei: ARDL Bounds Testing Approach to Cointegration

Issa Moh’d Hemed¹*, Suleiman Malik Faki¹ and Salim Hamad Suleiman²

¹Zanzibar University (ZU), P.O.Box 2440, Zanzibar, Tanzania.
²Ministry of Trade and Industry, P.O.Box 601, Migombani, Zanzibar, Tanzania.

Authors’ contributions

This work was carried out in collaboration among all authors. Author IMH designed the study, performed the statistical analysis, wrote the protocols and wrote the first draft of the manuscript. Authors SMF and SHS managed the analyses of the study and the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJEBA/2019/v10i430115

Editor(s):
(1) Dr. Gerasimos T. Soldatos, American University of Athens, Greece.
Reviewers:
(1) Cem Işık, Anadolu University, Turkey.
(2) Waspodo Tjipto Subroto, Universitas Negeri Surabaya, Indonesia.
Complete Peer review History: http://www.sdiarticle3.com/review-history/47816

Received 22 December 2018
Accepted 08 March 2019
Published 25 March 2019

ABSTRACT

Aims: This study examined the short run and long run dynamic relationship between economic growth and environmental pollution in Brunei. We adopted Auto Regressive Distributed Lag (ARDL) model to scrutinize the existence of the Environmental Kuznets Curve (EKC) among the studying variables by using time series data cover the period of 1974 to 2014.

Methodology: The ARDL bound test revealed the existence of long-run relationship among the integrated variables when CO₂ chosen as a dependent variable.

Results: The results support the existences of EKC hypotheses in the long-run whereas in the short-run an inverted U-shaped curve was not confirmed between GDP and CO₂ in Brunei. The results of Granger causality based on VECM analysis have shown unidirectional causality runs from economic growth to CO₂ in the short run. Further analysis through stability test indicates the coefficients in the model are stable and do not suffers with structural break within the time taken in the study.

*Corresponding author: E-mail: issahemed87@zanvarsity.ac.tz, issacclass87@live.com;
Conclusion: The government of Brunei should proceed to target the sustainable means of production, which has an environmental friendly and consumes less energy to enhance economic growth and maintain environmental quality in the long run.

Keywords: Carbon dioxide; economic growth; ARDL; granger causality; EKC; VECM; Brunei.

1. INTRODUCTION

In recent years, many countries around the world have started to focus on an alternative means of production as the drastic actions to reduce alarming rate of environmental degradation. Similarly, it is well known that the poor productive capacities of a nation and severe climatic change have been the results of higher level of CO₂ emission [1]. The emission of carbon dioxide gas has grown severely due to various human activities, related to the expansion of land utilization as well as the rapid use of fossil fuels as a source of energy. Since the constant supply of energy is needed among the heavy industries in order to maintain maximum production level, improve the human life and guarantee the strong economic growth among the nations [2]. Indeed, the rapid use of fossil fuel for production process has led the magnificent increases of CO₂ and other green house gases in the atmosphere. These emitted substances not only destroy the natural environment but also bring the negative impacts to human life that are considered to be among the world’s greatest environmental threats [3].

The economy of Brunei Darussalam mostly supported by the oil and gas industry which an account for 60 percent of Gross Domestic Product (GDP) and 90 per cent of the total exports in 2017 [4]. “Brunei Darussalam is the fourth-largest oil producer in South-East Asia and the ninth-largest exporter of liquefied natural gas (LNG) in the world” [5]. Nevertheless, the Brunei Darussalam implemented some key actions directed to reduce CO₂ emissions from fuel combustion that effectively begun in 2010. The overall amount of carbon dioxide emissions had increased from 63.2 percent in 2010 to 67.5 percent in 2014, while the Methane gas (CH4) had declined from 36.4 per cent in 2010 to 32.1 percent in 2014 [6]. The CO₂ is the biggest contributor of Green House Gases (GHGs) in the country which come from the burning of fossil fuels that is widely used in the electricity generation (48.7 per cent) and end-use sectors. Methane gas also has been recorded to contribute significantly share to the total emission of GHGs, which generated from the irregular releases of gas from industrial activities and land transportation accounts for 12.6 percent and 34.5 percent respectively [6]. Moreover, the problem of increasing energy efficiency in Brunei led to implement strategies that reduce the excessive uses of energy consumption, ultimately lead to decline the economic growth associated with collapse of primary industries that depend mostly on combustion of fossil fuels like oil. Therefore, the investigation of the relationship between energy consumption, urban population, economic growth and CO₂ emissions is significant towards the implication of energy policies in Brunei.

2. LITERATURE REVIEW

We adopt the fundamental work of Simon Kuznets in 1955, whose study is undertaken to investigate the inverse relationship between environmental quality and economic growth [7]. Environmental Kuznets Curve (EKC) hypothesized that there is a positive relationship between per capita income and environmental degradation which is consistent up to the turning point, where the relationship overturned, that is to say, at the initially stage, the environmental quality tends to decline as the economic growth rises and eventually at the turning point it starts to improve with per capita [8]. The environmental Kuznets curve draw the conclusion to either support the existence of EKC hypotheses based on an inverted U-shaped or reject the hypotheses when results portrays N-shaped EKC curve. The first empirical study on EKC hypotheses was conducted by Grossman and Krueger in 1991 and 1995 [9], in there an investigation employed specific random city model and observed an Inverted U-shaped curve between various indicators of environmental degradation (such as carbon dioxide emission) and GDP per capita.

Moreover, there are numerous empirical studies have been conducted to examine the linkages between carbon dioxide emissions, economic growth and other controlled variables using different econometric techniques to test the validity of EKC hypothesis and ended up with strong evidences to either support or not the existence of EKC hypothesis. İşık et al. [10]
tested the EKC hypothesis for 10 USA states leading with the highest level of CO₂ emission. In their study, they employed panel estimation method using CO₂ as dependent variables and GDP, renewable energy, fossil energy and population as the independent variables between 1980 and 2015. Their results supported the EKC hypothesis for Michigan, Florida, Illinois, Ohio and New York. Manuel et al. [11] examined the existence of an inverted U-shaped of EKC curve in Singapore using ARDL based on time series data over the period of 1971 to 2011. The empirical results support the EKC hypothesis both in long run and short run phenomenon. Alabduralzagi and Alrahi [12] examined the relationship between economic growth, CO₂, energy consumption and population density using ARDL bounds test to cointegration and verify the validity of EKC hypothesis in KSA. Their results also support the existence of inverted u-shaped in both short and long run. In addition, [13] investigated the links between CO₂, economic growth, energy consumption, urban population and trade openness in Pakistan, based on time series data between 1971 and 2010. Applying ARDL bound test to cointegration approach and VECM to verify the existence of EKC curve in long run and short run phenomena respectively. Their results support the Environmental Kuznets curve (EKC) between CO₂ and economic growth in long run as well as short run. In addition to that, other studies revealed the similar results of supporting EKC hypotheses [14,15,16,17] and [18].

However, some other studies failed to admit the inverted U-shaped relationship with real-life data in fact their results do not support EKC. Işik et al. [19] examined the dynamic causal relationship between economic growth and Carbon dioxide emission from 1870 to 2014 using VECM and the robustness of causality approaches. In their study also intend to reveal the impact of tourism, financial development and international trade on CO₂. The results indicate that however the tourism as a leading sector in the region but tends to contribute negatively to CO₂ emission in the long run. Pandey and Mishra [20] employed both dynamic and static framework to examine the causality between CO₂ emissions and economic growth using panel data cover the period between 1972 and 2010. Their results failed to support the EKC hypothesis in SAARC countries. However the results from VECM indicated the unidirectional granger causes from economic growth to carbon dioxide. linh Dinh Hong and Lin Shih-Mo [21] examined the dynamic relationship between carbon dioxide emission, economic growth, FDI and energy consumption between 1980 and 2010 using granger causality and cointegration approach to verify the existence of EKC in Vietnam. However their empirical results do not support EKC theory. Furthermore, [22] investigated the link between CO₂ and economic growth in West Africa. Using fixed effect model to time series data cover the period between 1970 and 2011. The results indicate the N-shaped relationship between CO₂ and economic growth which do not support the EKC theory in West Africa. Other previous studies failed to admit EKC hypothesis [23,24] and [25]. With respect to related reviews, it have been clearly shown the contradiction in an existence of EKC hypotheses based on different techniques run from individual to cross sectional countries.

To the best of our knowledge, no study has conducted directly to examine the environment-growth nexus in the context of Brunei using ARDL framework, Bound Cointegration, Granger Causality test and Sensitivity Analysis.

3. METHODOLOGY

Refer to the pioneering work of many researchers [8] and [26] who applied the idea of EKC theory that explore the relationship between environmental degradation by means of polynomial equation of per capita income. The standard estimation model can be expressed as follows:

\[E = f(Y, Y^2, Y^3, Z) \]

Where E represents as environmental degradation as a function of Income (Y), Income squared (Y²), income cubic (Y³) and a set of control variables (Z). In order to provide clear interpretation of the coefficients, all variables converted into logarithm forms and plug into an econometric model and therefore, the estimation model (1) will be:-

\[
\ln(CO2) = a_0 + a_1 \ln(Y_t) + a_2 (\ln(Y_t))^2 + a_3 (\ln(Y_t))^3 + a_4 (\ln(Z_t)) + \epsilon_t
\]

Where CO₂ represents environmental degradation as a proxy of carbon dioxide emission metrics tones per capita, Carbon dioxide has been used widely as explanatory variables [22,27,25] and [28]. Y as a GDP per capita, income squared (Y²), income cubic (Y³)
are indicators of economic growth; and Z refers to others independent variables that may influence environmental pollution, ε stands as disturbance term, ln represents logarithmic form and t is a time series, α, β, γ represent the elasticity of Y, Y², Y³ and Z respectively. This study included urban population and energy consumption as control variables. The inclusion of income (Y) and its exponential values as the determinants of environmental degradation into estimation model, may lead the model to suffer with perfect multicollinearity [29]. In econometric theories, the presence of multicollinearity in the model leads to increase standard errors and further affects the hypothetical decision rules criterion. This circumstance has prompt researchers to test the possibility of presence of multicollinearity problem between income, income squares, income cubic and other control variables.

Table 1 indicates the results of correlation matrix among the proposed variables which intend to be included in the estimation model. The results in the table below depict the perfect correlation (strong correlation) between income (lnY), squared income (lnY²) and cubic Income (lnY³), and hence the decision to include them as key variables in the estimation model can creates the multicollinearity problem.

Therefore our estimated model will drop all highly correlated variables and remained the rest of other explanatory variables. Therefore, lnCO₂, lnENC, lnPOP and lnY will be included in the model 2 and expressed as follow:

\[\ln(CO_2) = a_0 + a_1\ln Y_t + a_2(\ln ENC_t) + a_3(\ln POP_t) + \varepsilon_t \] (3)

Hence, in order to avoid the inclusion of multicollinearity problem in the estimation model between income and its polynomial terms. Narayan and Narayan [30] suggested decision that help to compare the magnitude of elasticity of income with respect to CO₂ between long run and short run as an alternative technique used to support or not the existence of EKC curve in developing economies. Moreover, if the results indicate that the long run effects on income elasticity is lower than the short run effects, this depicts that over a given period of time CO₂ falls as the income rises after turning point which will support the existence of EKC Hypotheses.

3.1 Data Sources

We employed the set of time series data collected from the World Development Indicator (WDI) in 2018. The series of data collection that cover 1974 to 2014 and comprised carbon dioxide emission measured in metric tons per capita, Gross Domestic Product per capita as a constant $ in 2010, energy consumption as kg of oil equivalent per capita and population as a percentage of urban population. All variables in this study were transformed into logarithms form namely as lnCO₂, lnPOP, lnY and lnENC.

3.2 Estimation Methodology

3.2.1 Unit root test

Generally, the data collected from the large span of time period, the unit root problem would be possible to exist and without strictly careful, the results will be nonsense. In order to check the unit root problem in the data, the stationarity technique of time series should be applied such as “Augmented Dickey Fuller” (ADF) (1979) and Phillips- Perron (PP) (1989) based on the following regression equation.

\[\Delta y_t = \alpha + \delta_1 y_{t-1} + \beta y_{t-1} + \sum_{i=1}^{k} \gamma \Delta y_{t-i} + \mu_t \] (4)

Where Δy_t indicates the first difference of y, u_t represents the serial correlation errors and α, δ, β and γ are parameters of the estimated model.

Table 1. Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>INCO2</th>
<th>INEC</th>
<th>INPOP</th>
<th>INY</th>
<th>INY2</th>
<th>INY3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCO2</td>
<td>1.000000</td>
<td>.430549</td>
<td>.232410</td>
<td>-.364343</td>
<td>-.364641</td>
<td>-.364935</td>
</tr>
<tr>
<td>INEC</td>
<td>.430549</td>
<td>1.000000</td>
<td>.628180</td>
<td>-.472051</td>
<td>-.472591</td>
<td>-.473123</td>
</tr>
<tr>
<td>INPOP</td>
<td>.232410</td>
<td>.628180</td>
<td>1.000000</td>
<td>-.801483</td>
<td>-.802541</td>
<td>-.803587</td>
</tr>
<tr>
<td>INY</td>
<td>-.364343</td>
<td>-.472051</td>
<td>-.801483</td>
<td>1.000000</td>
<td>.999992</td>
<td>.999992</td>
</tr>
<tr>
<td>INY2</td>
<td>-.364641</td>
<td>-.472591</td>
<td>-.802541</td>
<td>.999992</td>
<td>1.000000</td>
<td>0.999992</td>
</tr>
<tr>
<td>INY3</td>
<td>-.364935</td>
<td>-.473123</td>
<td>-.803587</td>
<td>.999992</td>
<td>.999992</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
Table 2. Summary of variables and expected sign

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Variable</th>
<th>Measure</th>
<th>Previous author on the same variable</th>
<th>Sources</th>
<th>Expected sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
<td>Environmental pollution</td>
<td>Alam, 2014</td>
<td>WDI</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>GDP</td>
<td>Economic growth</td>
<td>Omari, 2013</td>
<td>WDI</td>
<td>(+/-) short run/long run</td>
</tr>
<tr>
<td>ENC</td>
<td>Per capital energy use</td>
<td>Energy Consumption</td>
<td>Ghos et al. 2014</td>
<td>WDI</td>
<td>(+)</td>
</tr>
<tr>
<td>POP</td>
<td>Urban Population</td>
<td>Population</td>
<td>Javid and Zulfiqar, 2017</td>
<td>WDI</td>
<td>(+)</td>
</tr>
</tbody>
</table>

Source: Authors Compilation

If this test shows significant value, “it means that the variable series is stationary and does not has a unit root, so the null hypothesis will be rejected, but if the ADF test is not significant, it means that the variable series is non-stationary and has a unit root” [31].

3.2.2 Bound testing approach for cointegration

Bound testing approach for cointegration will be performed once after checking and confirming the stationarity of all variables that are integrated either in I(0) or I(1). This study employed ‘Auto-Regressive Distributed Lag Model (ARDL)’ technique to check the stability of a long run equilibrium relationship between CO₂ emission, economic growth, energy consumption and urban population. This technique is most powerful since it generates more accurate results particularly for the case of small sample size [13]. The Autoregressive Distribute Lag model can be estimated by using a simple linear transformation technique to generate dynamic ‘Unrestricted Error Correction Model (UECM)’. This model tends to present the short run dynamism and an equilibrium position in the long run phenomenon. The following UECM is employed for equation 3 and expressed as follows

\[\Delta \text{InCO}_2 = a_0 + a_1 \tau + \sum_{i=1}^{p} \phi_i \Delta \text{InCO}_2_{t-i} + \sum_{i=0}^{q} \gamma_i \Delta \text{InY}_{t-i} + \sum_{i=0}^{s} \delta_i \Delta \text{InENC}_{t-i} + \sum_{i=0}^{t} \omega_i \Delta \text{InFDL}_{t-i} + \lambda_C \text{InCO}_2_{t-1} + \lambda_Y \text{InY}_{t-1} + \lambda_E \text{InENC}_{t-1} + \lambda_P \text{InPOP}_{t-1} + \mu_t \]

(5)

Where \(\phi, \Omega, \theta \) and \(\omega \) show the short run relationship in the given equation respectively and the long run relationship among the coefficients variable is presenting by \(\lambda_C, \lambda_Y, \lambda_E, \lambda_F \) and \(\lambda_P \). The null hypothesis of no co-integrated among the given variables is stated as \(H_0: \lambda_C = \lambda_Y = \lambda_E = \lambda_F = 0 \), while alternative hypothesis of co-integrated is given as \(H_1: \lambda_C = \lambda_Y = \lambda_E = \lambda_F \neq 0 \).

3.2.3 Error correction model specification (ECM)

Once after confirming the existence of cointegration among the variables via bound test, the short and long run relation will be established by using VECM. It is possible to calculate the Error Correction Term (ECT) from the long-run equation by replacing the lagged level variables in the ARDL equation with \(\text{ECT}_{t-1} \) and estimate the model after impose the same optimal lags [12]. The VECM model can be written as follows:

\[\Delta \text{InCO}_2 = a_0 + \sum_{i=1}^{p} a_{i1} \Delta \text{InCO}_2_{t-i} + \sum_{i=1}^{q} a_{i2} \Delta \text{InY}_{t-i} + \sum_{i=1}^{s} a_{i3} \Delta \text{InENC}_{t-i} + \sum_{i=1}^{t} a_{i4} \Delta \text{InPOP}_{t-i-1} + \lambda_1 \text{ECT}_{t-1} + \mu_t \]

(6)

The InCO₂ is a function of its lagged values, lagged values of other exogenous variable in the model and the lagged value of ECT. The ECT is the one lagged Error Correction Term indicates the co-integrating vectors and the speed of adjustments to equilibrium points presented by the coefficients of \(a_{s} \). The presence of ECTs term in the model reveals that any change in the dependent variable as a result of the disequilibrium in the long run relationship and the changes in the independent variables. A negative and significant value of ECTs measures how much the error term is corrected itself each time towards the point of equilibrium in the long run.

3.2.4 Granger causality

When the results of bound test supports the existence of long run relationship, there is an enough evidence to indicate that the underlying variables in Eq (3) are granger causes at least in one direction. Engle and Granger (1987) proposed that conducting the Granger causality test through Vector Auto Regressive (VAR) approach when long run relationship confirmed may provide inconsistent results in the presence of cointegration. Therefore, adding new variable
such as the Error Correction Term (ECT) to the VAR model would be helpful to explore the long run relationship [12] and [7]. The direction of causality among the studying variables can be identify by the negative sign of one lagged coefficient through ECT of the long run relations. The granger causality test through the framework of VECM techniques is expressed in the following equation:

\[
\begin{align*}
\Delta \text{InCO}_t &= \rho_{11} \Delta \text{ENC}_t + \rho_{12} \Delta \text{GDP}_t + \rho_{13} \Delta \text{POP}_t + \rho_{14} \Delta \text{SMUS}_t + \sum_{i=1}^{r} \eta_{1i} \Delta \text{ECM}_{t-i} \\
\text{ECM}_{t-1} &= \eta_{22} \text{ENC}_{t-1} + \eta_{23} \text{GDP}_{t-1} + \eta_{24} \text{POP}_{t-1} + \eta_{25} \text{SMUS}_{t-1}
\end{align*}
\]

Where the \((1-L)\) indicates lag operator, ‘ECM\(_{t-1}\)’ is lagged error-correction term; Therefore, the main advantage of this model is to capture the causal relationship among the co-integrated parameters and distinguish between short-run and long-run relations. The significance of the lagged error-correction term based on t-test(s) in the VECM, indicates the “long run” causal relationship, whereas the short-run causal relationship is depicted through the significance of F-test of the lagged explanatory variables. After estimation of all equations, the next step is to perform diagnostic tests to validate the adequacy of the model. These diagnostic tests include serial correlation, normality distribution tests and Heteroscedasticity. The stability of the ECM performed using the Cumulative Sum (SUMUS) and cumulative sum squared (CUMUSQ) techniques to confirm graphically the stability of the variables estimated in the model [12].

4. RESULTS ANALYSIS AND DISCUSSION

4.1 Results of Unit Root Test

The bounds test framework is applicable for the variables that are either integrated in I(0) or I(1). Therefore, the unit root tests were performed to determine the order of integration among the variables and avoid any spurious results. The “Augmented Dickey-Fuller (1979) (ADF)” and “Phillips-Peron (1988) (PP)” tests were performed to test the null hypotheses of unit root against the alternative hypotheses of stationarity. The results of unit root tests provided mixed results whereby some variables become stationary at I(0) and other at I(1). These results verify the adoption of ARDL model. The results of these tests are consistent with [28].

4.2 Bounds Test Approach to Cointegration

The results of unit root test among the underlying variables indicate the application of the ARDL model to cointegration will give efficient and realistic estimates. The ARDL bounds test to cointegration investigate the possible existent of long run and short-run relationships among the underlying variables using the bound F-statistics in equation (5). Table (4) demonstrates the outcomes of ‘ARDL bounds test to cointegration’. The results of this test confirm the existence of co-integrated equation among the underlying variables, where the value of F-test is greater than the upper boundary of critical value at 5 percent. Therefore, we reject the null hypothesis of no co-integrated among the studying variables when InCO\(_2\) is dependent variables. Based on the results of cointegration using bound test, supports the estimation of VECM model of InCO\(_2\) equation to determine the long and short run relationship.

4.3 Long-run estimation results

The coefficient of economic growth is negative and statistical significant at 5 percent level as shown in table 5 below. If 1 percent increases in the economic growth in the long run is predicted the CO\(_2\) emission to decreases by 5.33 percent. This result is consistent with the findings of Khalid Ahmed and Wei Long [32] for Pakistan. The results also indicate one percent increases in the energy consumption holding other variables fixed the pollutants of CO\(_2\) emission will increase by 1.531 per cent in the long run. The coefficient of population growth also has significant impact to reduce CO\(_2\) emission to more than 6 percent in the long run.

4.4 Short-run Estimation

The results of the short-run relationship between carbon dioxide (CO\(_2\)), economic growth (GDP), energy consumption (ENC) and population (POP) in Brunei are depicted in table (6). The lagged value of the Error Correction model has negative and statistical significant at 5 percent level. The coefficient of economic growth is negative and statistical significant. This indicates that, economic growth in Brunei tend to improve the environmental quality in the short run. This implies that a 1 percent increases in economic growth will lead to reduce the level of CO\(_2\) emission by 4.84 percent. The energy consumption has the positive effects on the amount of carbon dioxide emissions, this shows...
that a 1% increase in consumption of energy will increase CO\textsubscript{2} emission by 0.89 percent. The results of population found to be negative and significant at 5 percent level. This indicates that a percent rise in urban population is predicted to reduce emitted CO\textsubscript{2} gases by 52.38 percent in Brunei when short run taken into consideration [13]. Moreover, the estimation of long-run and short-run as indicated in table 6 show that the negative elasticity of economic growth on CO\textsubscript{2} emission in the short-run fail to support the existence of EKC whiles the negative elasticity change in the long run tends to support the EKC hypotheses in Brunei. This result consistent with the study of [32].

Table 3. Results of unit root tests

<table>
<thead>
<tr>
<th>Variable</th>
<th>Augmented Dickey-Fuller (ADF)</th>
<th>Phillips Perron (PP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant without trend</td>
<td>Constant with trend</td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td>Constant without trend</td>
</tr>
<tr>
<td>lnCO\textsubscript{2}</td>
<td>-2.8173</td>
<td>-2.7931</td>
</tr>
<tr>
<td>lnY</td>
<td>-.6251</td>
<td>-1.4312</td>
</tr>
<tr>
<td>lnENC</td>
<td>-2.4900</td>
<td>-3.5476*</td>
</tr>
<tr>
<td>lnPOP</td>
<td>-2.1149</td>
<td>-1.1755</td>
</tr>
<tr>
<td>ΔlnCO\textsubscript{2}</td>
<td>-4.936**</td>
<td>-7.3386**</td>
</tr>
<tr>
<td>ΔlnY</td>
<td>-4.7898**</td>
<td>-4.0141**</td>
</tr>
<tr>
<td>ΔlnENC</td>
<td>-5.8319**</td>
<td>-12.5931**</td>
</tr>
<tr>
<td>ΔlnPOP</td>
<td>-3.1090*</td>
<td>-3.7755*</td>
</tr>
</tbody>
</table>

Note: ** and * denotes significant at 1%, and 5% significance level, respectively.

Table 4. Results of bounds testing to cointegration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lnCO\textsubscript{2}</td>
<td>F\textsubscript{lnCO\textsubscript{2}}(lnCO\textsubscript{2}, lnY, lnENC, lnPOP)</td>
<td>5.0914</td>
<td>5%</td>
<td>Yes</td>
</tr>
<tr>
<td>lnY</td>
<td>F\textsubscript{lnY}(lnY, lnCO\textsubscript{2}, lnENC, lnPOP)</td>
<td>1.7912</td>
<td>5%</td>
<td>No</td>
</tr>
<tr>
<td>lnENC</td>
<td>F\textsubscript{lnENC}(lnENC,lnCO\textsubscript{2}, lnY, lnPOP)</td>
<td>3.1687</td>
<td>5%</td>
<td>No</td>
</tr>
<tr>
<td>lnPOP</td>
<td>F\textsubscript{lnPOP}(lnPOP,lnCO\textsubscript{2}, lnY, lnENC,)</td>
<td>2.4405</td>
<td>5%</td>
<td>No</td>
</tr>
</tbody>
</table>

Significant Value

<table>
<thead>
<tr>
<th>Critical values</th>
<th>Lower Bound I(0)</th>
<th>Upper Bound I(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>2.72</td>
<td>3.77</td>
</tr>
<tr>
<td>5%</td>
<td>3.23</td>
<td>4.35</td>
</tr>
<tr>
<td>10%</td>
<td>4.29</td>
<td>5.61</td>
</tr>
</tbody>
</table>

Table 5. Long-run estimation results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEC</td>
<td>1.531756</td>
<td>.602970</td>
<td>2.540350*</td>
<td>.02</td>
</tr>
<tr>
<td>INPOP</td>
<td>-6.416853</td>
<td>2.321043</td>
<td>-2.764643**</td>
<td>.01</td>
</tr>
<tr>
<td>INY</td>
<td>-5.337163</td>
<td>2.063439</td>
<td>-2.586537*</td>
<td>.02</td>
</tr>
<tr>
<td>C</td>
<td>74.570173</td>
<td>27.958662</td>
<td>2.667158*</td>
<td>.02</td>
</tr>
</tbody>
</table>

Diagnostic test statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Test-stats</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial correlation</td>
<td>1.686965</td>
<td>.23</td>
</tr>
<tr>
<td>Normality</td>
<td>1.305386</td>
<td>.52</td>
</tr>
<tr>
<td>Heteroscedasticity</td>
<td>1.141277</td>
<td>.40</td>
</tr>
</tbody>
</table>

Note: ** and * denotes significant at 1%, and 5% significance level, respectively.
Table 6. Short-run estimation results (InCO₂)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(INEC)</td>
<td>.888452</td>
<td>.263483</td>
<td>3.371953</td>
<td>.005</td>
</tr>
<tr>
<td>D(INEC(-1))</td>
<td>.168295</td>
<td>.297546</td>
<td>.565611</td>
<td>.58</td>
</tr>
<tr>
<td>D(INEC(-2))</td>
<td>-.399902</td>
<td>.295666</td>
<td>-1.352546</td>
<td>.20</td>
</tr>
<tr>
<td>D(INEC(-3))</td>
<td>-.363335</td>
<td>.249568</td>
<td>-1.455857</td>
<td>.17</td>
</tr>
<tr>
<td>D(INPOP)</td>
<td>-52.382543</td>
<td>299.7550</td>
<td>-1.74751</td>
<td>.86</td>
</tr>
<tr>
<td>D(INY)</td>
<td>-4.843530</td>
<td>1.490686</td>
<td>-3.249194</td>
<td>.007</td>
</tr>
<tr>
<td>D(INY(-1))</td>
<td>-1.428382</td>
<td>2.900069</td>
<td>-4.92534</td>
<td>.63</td>
</tr>
<tr>
<td>D(INY(-2))</td>
<td>4.050801</td>
<td>1.864779</td>
<td>2.172268</td>
<td>.05</td>
</tr>
<tr>
<td>CointEq(-1)</td>
<td>-1.143057</td>
<td>.309676</td>
<td>-3.691138</td>
<td>.003</td>
</tr>
</tbody>
</table>

Cointeq = INCO₂ - (1.5318*INEC - 6.4169*INPOP - 5.3372*INY + 74.5702)

Note: ARDL (2, 3, 1, 4) selected on the basis of AIC. ** and *** Represent 5% and 1% level of significance, respectively. Dependent variable is lnCO₂

4.5 Stability Test and Sensitivity Analysis

The structural changes of macroeconomic policies in developing countries may likely to cause multiple structural breaks among the macroeconomic series. Therefore, it is vital to verify the stability of long run and short run coefficients through the cumulative Sum (CUSUM) and 'Cumulative Sum of Squares (CUSUMSQ)' techniques which proposed by [13]. These tests do not require the specification of date where the structural breaks occurs, only suggest that the parameters will be stable if the line passes within the bounds at 5 percent critical bounds. If the plot of these techniques passes outside the critical bound of 5 percent level of significance, reject the null hypothesis of not stable the regression coefficient and this implied that the coefficient in the ECM are not stable [33]. The findings in the Fig. 1 below indicate that the lines within the plots of ‘CUSUM’ and ‘CUSUMSQ’ test statistics pass within the critical bound of 5 percent, which confirmed that the movement inside the critical bounds at 5 percent level of significant for all coefficients are suggestive to be stable throughout the years covered in the study. Furthermore, the ARDL model regarded as the best fitted model as the difference between the true observation and predicted value is infinitesimal, therefore, the coefficients are stable and do not suffer the structural change over the given time in the study.

![Fig. 1. Stability test](image)

Table 7. The results of granger-causality (Wald F-statistic test)

<table>
<thead>
<tr>
<th>DICO₂</th>
<th>DLY</th>
<th>DLENC</th>
<th>DLPOP</th>
<th>DICO₂</th>
<th>DLY</th>
<th>DLENC</th>
<th>DLPOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICO₂</td>
<td>1.97</td>
<td>1.77</td>
<td>7.65*</td>
<td>DICO₂</td>
<td>5.53*</td>
<td>3.24#</td>
<td>4.47*</td>
</tr>
<tr>
<td>DLY</td>
<td>3.62*</td>
<td>.08</td>
<td>.14</td>
<td>DLY</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>DLENC</td>
<td>2.92</td>
<td>3.32</td>
<td>1.12</td>
<td>DLENC</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>DLPOP</td>
<td>2.05</td>
<td>.08</td>
<td>.09</td>
<td>DLPOP</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

Notes: the null hypothesis is that there is no Granger causality between variables. *, **, # denote significant level at 1% and 5% and insignificant respectively

4.6 VECM Granger Causality Analysis

The short-run co-integrated relations between CO\(_2\), economic growth, energy consumption and population have shown the existence of causal relationship among the underlying variables. The short run causality has shown that there is unidirectional significant causal relationship which runs from CO\(_2\) to population. Similarly, there is also unidirectional causal relationship which runs from economic growth to carbon dioxide emission in the short run. The t-statistic of the ECT in the same table when carbon dioxide emission as a dependent variable reveals the existence of long run causal relationship which run from energy consumption, economic growth and population to CO\(_2\) emission since the value of CO\(_2\) emission is negative and statistical significance. There is no evidence of long run relationships for DlnENC; DlnY and lnPOP; since soon after has a positive but insignificant Error correction term, while the two later have failed to pass the bounds of cointegration equation. The t-statistics of the ECT in the same table reveals the existence of long-run causal relationship among the mentioned variables. It is obvious to say that there is a bidirectional long-run causal relationship (equilibrium is corrected) between CO\(_2\), lnY, INPOP and InENC.

5. CONCLUSION

The short run and long run dynamic relationships between CO\(_2\), energy consumption, urban population and economic growth in Brunei have been examined in this study. It is one among the crucial topic that deserves a special attention, since in most cases the economic growth in developing economy is associated with the environmental degradation. This happened due to the fact that, most of the heavy industries and means of transportation depend on consumption of pollutant substances as sources of energy which contribute to the large extent the emission of CO\(_2\) gases in the atmosphere. The stability of long and short run among the coefficients are undertaken using the cumulative Sum (CUSUM) and 'Cumulative Sum of Squares (CUSUMSQ)' techniques for the purpose of examine whether or not the coefficient suffer with structural change over the given time. The results of this test revealed that there is no structural change among the studying variable and therefore the coefficients are stable. Furthermore, the empirical results of this study revealed that the existence of long-run relationship among the CO\(_2\), energy consumption, urban population and economic growth. The estimation of long-run and short-run show that the negative elasticity of economic growth on CO\(_2\) emission in the short-run fail to support the existence of EKC whiles the negative elasticity change in the long run support the EKC hypotheses in Brunei. Moreover, the analysis of granger causality indicates that the growth rate of economy granger causes the emission of the CO\(_2\) in the short-run. When carbon dioxide emission takes as a dependent variable the result reveals the existence of long run causal relationship which runs from energy consumption, economic growth and population to CO\(_2\) emission.

Therefore, the government of Brunei Darussalam should continue to target the sustainable means of production and transportation, apply the efficient technology of extracting renewable resources such as oil from the ground which is environmental friendly and consume less energy to mitigate the adverse impact of CO\(_2\) and other green house gases in the country.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

2. Salahuddin Mohammad, Gow Jeff, Ozturk Ilham. Is the long-run relationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust; 2015. DOI: http://dx.doi.org/10.1016/j.rser.2015.06.005
 DOI:https://doi.org/10.1787/9789264305328-16-en page 205 to 229.

 Available:http://dx.doi.org/10.1016/j.enpol.2012.08.065

 DOI:http://dx.doi.org/10.18533/jefs.v3i02.93

 DOI: 10.1080/16081625.2018.1245625

 Available:www.irmrbrjournal.com

 DOI: 10.29145/2017/jqm/010105
 Available:https://journals.umt.edu.pk/sbe/jmqm/volume1issue1.aspx

 DOI: 10.5814/j.issn.1674-764x.2016.02.007

 Available:https://mpra.ub.uni-muenchen.de/id/eprint/83000

 Available:https://doi.org/10.1080/23322039.2017.1379239

 DOI: 10.15244/pjoes/78619

 Available:https://www.tandfonline.com/doi/abs/10.1080/15567249.2016.1263251

