Firm's Imperfect Compliance and Pollution Emissions: Theory and Evidence from South Africa

Yu Kun Wang* and Xiaoyong Zhang

1Department of Economics and Finance, Guangdong Ocean University Cunjin College, Guangdong, China.

Authors' contributions

This work was carried out in collaboration between both authors. Author YKW designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author XZ managed the literature searches. Both authors read and approved the final manuscript.

ABSTRACT

Carbon emissions exacerbate global climate change. Transitioning away from coal is a cost-effective path to a low-carbon economy. Although many articles have considered the issue of manufacturers' production and emission of pollution. Few papers have discussed the impact of environmental tax and fuel tax on the cost of environmental degradation. This paper seeks to fill this gap by developing a theoretical model to discuss the relationship between environmental pollution and economic growth. Furthermore, in order to support the theoretical results and testify the relationship between carbon emissions and taxation, we take South Africa as a case for discussing the effect of environmental taxation and fuel levy on firms' carbon emissions. We show that the impact of environmental taxes on carbon dioxide emissions is greater than that of fuel taxes on carbon dioxide emissions. In addition, we find that the GDP level of South Africa is on the left of the inflection points of Kuznets Curve. In other words, the current growth of South Africa's economy is at the cost of worsening the environmental degradation.

Keywords: Carbon emission; environmental tax; fuel levy; Kuznets curve.
1. INTRODUCTION

In 1932, Pigou proposed the use of economic incentives to deal with externalities caused by pollution which show that the tax rate equivalent to the cost of the marginal damage caused by pollution (that is, the Pigouvian tax) would make the resource allocation of the society reach the Pareto optimality. Baumol and Oates [1] further pointed out that in a perfectly competitive market, the Pigouvian tax can indeed internalize external effects and further correct externalities. Also, Heyes [2], Macho-Stadler [3] and Shiota [4] show that enforcement policies do affect actual emissions. Sterner and Isaksson [5] show that the Refunded emission payments (REP) scheme offers an interesting alternative to permits, particularly when the regulator wants a price-type instrument but does not want to place the full cost burden on the polluters. As we know, however, the REP scheme has its limitations, the basis of refunding in an REP scheme requires a common output, which can be hard to define. Requate [6] and Williams [7] consider governments have a variety of tools at their disposal, among which the emissions tax is publicly recognized as a central pillar. Nevertheless, Greenstone and Jack [8] point out that many developing countries still maintain lax environmental policies, setting very low or even zero emissions taxes. Piciu and Trică [9] suggest that the environmental taxes can be returned to polluters in the form of subsidies only under strict obligations.

Carbon emission in Africa has led to the premature deaths of 712,000 people every year. In South Africa’s case, we think it is a critical need for South Africa-specific studies on the association between air pollution and environmental policy. In South Africa, after more than eight years in the making, the carbon tax is expected to take effect on 1 June 2019 and aims to price greenhouse gas emissions by obliging the polluter to internalise the external costs of emitting carbon, and contribute towards addressing the harm caused by such pollution. The design included a number of features to increase its acceptability and to limit the initial impact on South African economy. The proposed tax rate of R120 per tonne of carbon-dioxide - equivalent (tCO₂e) was intended to increase by 10% a year until 2020 (phase 1), when it would then be reviewed. Among the mechanisms proposed to make the tax more acceptable were an exemption for 60% of emissions by firms in all the covered sectors, additional tax-free emissions allocations for trade-exposed, energy-intensive sectors or those that had invested in efficiency measures, and allowing firms to utilise offsets to reduce a portion of their tax liabilities. In addition, the design of the carbon tax provides significant tax-free emissions allowances ranging from 60% to 95% for the first phase. This will provide South African business with sufficient time and flexibility to transition their activities through investments in energy efficiency, renewables and other low carbon measures.

This paper is organized as follows. In section 1, we discuss the relationship between CO2 emissions and environmental tax and fuel levy in South Africa’s case. Section 2, empirical analysis is used to explore the causal relationship between GDP and CO2 emissions and the inflection point of South Africa’s environmental Kuznets curve.

2. LITERATURE REVIEW

Tullock [10] first put forward the hypothesis of double dividend and find that pollutants can be reduced, by levying environmental taxes on water resources, Panayotou [11] collected data from a sample of 30 countries from 1982 to 1994 and found that low-income policies had a positive effect on improving the environment. With the increase of income level, the effect became more obvious. However, the faster the economic growth and the higher the population density, the higher the environmental cost of economic growth. Harbaugh et al. [12] show that the relationship between economic growth and environmental pollution is not only influenced by economic factors, but also by sample selection and research methods. Bruyu [13] selects data from developed countries in the 1980s for case study, which shows that changes in economic structure had no significant effect on SO2 emissions, but in the high-income stage, environmental policies formed by international agreements could well explain the negative correlation between environment and income. Grossman and Krueger [14] regards urban air pollution and oxygen content in river water as environmental indicators. Through regression analysis, Grossman concludes that economic growth causes deterioration of environmental indicators in the low-income stage, and improves with economic growth in a certain stage, and shows that the inflection point occurs at the income level of $8,000 (some examples are Sherry [15,16,17]). Copeland [18] analyzes the relationship among economic growth,
international trade and environmental pollution, and found that on the inverted U-shaped curve of economic growth and environmental pollution, international trade and capital flow had a great impact on environmental pollution. Llorca and Meunie [19] obtain the N-curve relationship between SO2 emission and per capita income.

2.1 The Model

Aiming at the relationship between environmental pollution and economic growth, this paper establishes indirect utility functions as Eq.(1). In the formula, \(R \) represents real income, \(a_1, a_2, \gamma, \delta \) represent constants. These constants are greater than 0, \(Z \) represents pollution emissions, and assumes that the marginal negative utility of pollution emissions remains unchanged. In order to eliminate the impact of structural effects, it is assumed that only one commodity model is used for analysis. Therefore, the national income function \(Y \) is expressed as Eq.(2):

\[
V = a_1 - a_2 \times e^{\frac{R}{\gamma}} - \gamma \times Z \tag{1}
\]

\[
Y = P \times \lambda \times Z^\beta \times F(k)^{1-\beta} \quad ; k = \frac{K}{L} \tag{2}
\]

In the formula, \(\lambda \) is the conversion coefficient, \(P \) is the commodity price, \(F(k) \) is the production function and \(\beta \) is the constant, where marginal output value of pollution emission is equal to the demand of reverse pollution emission, which can be expressed as follows.

\[
\Gamma^D = \beta \times P \times \lambda \times Z^{\beta-1} \times F(k)^{1-\beta} = \frac{\beta}{Z} \times Y \tag{3}
\]

Also, the supply-utility function of pollutant emissions can be obtained as follows.

\[
\Gamma^S = \frac{V_Z}{V_Y} = \frac{\gamma \times \Omega(P) \div \delta}{a_2} \times e^{\frac{R}{\gamma}} \tag{4}
\]

Through the supply-demand function, the expression of the environmental Kuznets curve can be obtained as Eq.(5) and Eq(6)

\[
Z^* = \frac{\beta \times a_2 \times R}{\gamma \times \delta} \times e^{\frac{R}{\delta}} \tag{5}
\]

The following formula can be obtained by calculating the derivative of environmental pollution \(Z \).

\[
\frac{dZ}{dR} = \frac{\beta \times a_2 \times (e^{\frac{R}{\gamma}} - \frac{1}{\delta} \times R \times e^{\frac{R}{\gamma}})}{\gamma \times \delta} \times (\delta - R) \times Z \tag{6}
\]

The inflection point of environmental pollution is \(R = \delta \). When economic growth reaches the level of \(\delta \), environmental pollution can be alleviated. It means that people begin to pay attention to the issue of sustainable environmental management. Eq.(6) is a convergence function, and its value is greater than zero. If \(n \) positive convergence functions are added together, the function obtained should also be convergent. Based on the theoretical models derived from Eq.(1) to (6), and GDP and CO2 data of South Africa over the past 27 years, the paper examines whether the current GDP of South Africa has reached the inflection point of the Environmental Kuznets Curve.

3. METHODOLOGY AND ANALYSES

Being carbon neutral is increasingly seen as good corporate or state social responsibility and a growing list of corporations, cities and states are announcing dates for when they intend to become fully neutral. As we know, most of South Africa’s energy needs are directly derived from coal and most of coal consumed on the African continent is mined in South Africa. Thus, reducing carbon emissions while keeping a high pace of economic growth lies at the heart of South Africa’s sustainable development plan [20]. However, it is worth discussing whether there is a causal relationship between the increase of CO2 caused by the government’s raising the minimum emission standard of CO2 and environmental tax and fuel levy on polluters’s carbon dioxide emissions. In contrast with the traditional method, we focus on examining the relationship between carbon emissions, environmental tax and fuel levy by using an empirical approach, where carbon emissions are measured in MtCO2, environmental tax and fuel levy are measured in ZAR millions, respectively. The data on carbon dioxide emissions came from The International Energy Agency, the environmental tax and fuel levy data collected from The National Treasury and SARS statistics [21,22].

In the beginning, the time evolution of carbon emissions, environmental tax and fuel levy in terms of levels (logarithms) are presented in Fig. 1, showing the environmental tax series have an obvious increasing trend, and those sequences
showing that the mean values are varying in different periods, we then judge that the sequences are unstable [23,24].

Next we test the cointegration approach among the carbon emissions, environmental tax and fuel levy for South Africa over a time period ranging from 2006 to 2017, determining whether the stochastic component contains a unit root or not. The results of unit root tests are presented in Table 1, which demonstrates that the LCO2 appeared stationary at the first-differenced form under 5% significant level, depicting the logged variables are I(1), the LE
ternalTax and LFuellevy also appeared stationary at the first-differenced form under 5% significant level, depicting the logged variables are also I(1). We then utilize the OLS regression method evaluating the relationship between LCO2, LE
ternalTax and LFuellevy, the results are as follows [25,26,27,28]:

\[
LCO2 = 5.235428 - 0.001524 \times \text{LE
ternalTax} + 0.074901 \times \text{LFuellevy}.
\] (7)

In the following section, we check the residuals for a unit root. The residual used to test the cointegration relationship is as follows:

\[
e = LCO2 - 5.235428 + 0.001524 \times \text{LE
ternalTax} - 0.074901 \times \text{LFuellevy}
\] (8)

Eq.(8) indicates the t-statistic of the residual series is -3.486349(Prob* = 0.0364), which is less than the critical value at 5% significant level, and thus reject the null hypothesis, indicating that the residual series has no unit root and is stationary at I(0). The estimation results represent a cointegration relationship between LCO2 emissions, LE
ternal Tax and LFuellevy, error correction models(ECM) can then be analyzed.

![Fig. 1. Time trend data on CO2 emissions, environmental tax, and fuel levy in logarithmic form for South Africa](image-url)

Table 1. Performance of unit root test of LCO2, LE
ternal Tax and LFuellevy

<table>
<thead>
<tr>
<th>Variable</th>
<th>InCO2</th>
<th>In EnvironmentalTax</th>
<th>In fuellevy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>level</td>
<td>1st difference</td>
<td>level</td>
</tr>
<tr>
<td>ADF</td>
<td>-1.347750</td>
<td>-3.672751**</td>
<td>-1162135</td>
</tr>
<tr>
<td></td>
<td>(0.5517)</td>
<td>(0.0316)</td>
<td>(0.8591)</td>
</tr>
<tr>
<td>PP</td>
<td>-3.204750</td>
<td>-5.718489**</td>
<td>-0.553918</td>
</tr>
<tr>
<td></td>
<td>(0.1340)</td>
<td>(0.0062)</td>
<td>(0.09575)</td>
</tr>
<tr>
<td>KPSS</td>
<td>0.493548</td>
<td>0.177420**</td>
<td>0.163124</td>
</tr>
</tbody>
</table>

Notes: Variables in logarithmic form; ADF test and PP test, ** stand for rejection of null hypothesis at 5% significance level, KPSS test, ** stand for acceptance of null hypothesis at 5% significance level.
In order to ensure that the random disturbance term in ECM become white noise, the model with lag terms is estimated first, and then we adjust the regression model. We find that the short-term elasticity of LCO2 to LE\text{nvironmentalTax} is -0.018906 and the short-term elasticity of LCO2 to LF\text{uellevy} is -0.051104. As can be seen from Eq.(9)

\[\Delta LCO_2 = \alpha + \sum_{i=1}^{\infty} \beta_i \Delta LCO_{2,i-1} + \sum_{i=1}^{\infty} \gamma_i \Delta LEN\text{vironmentalTAX}_{i-1} + \sum_{i=1}^{\infty} \delta_i \Delta LFUELLEVY_{i-1} + \lambda e_{i-1} + v_i \]

\[\Delta LCO_{2,-1} = 0.009826 - 0.018906 \Delta LENVIRONMEN\text{TAL\ TAX} - 0.051104 \Delta LFUELLEVY + 1.130707 \Delta LCO_{.,-1} + 0.925546 \Delta LCO_{.,-2} - 2.316379 \epsilon_{.,-1} \] (9)

4. ESTIMATION OF RESULTS

As indicated in Table 1, which shows that LCO2 and L\text{environmentalTax} and LF\text{uellevy} are I(1) sequence. We then adopt Johansen Cointegration to test whether there exist a long-term equilibrium relationship between LCO2 and L\text{environmentalTax} and LF\text{uellevy}. In Table 2, Trace test result shows that there exists a set of cointegrating vectors at the 5% level, and Max-eigenvalue test also indicates the same result.

Next, we discuss the interaction between environmental tax and fuel levy on carbon dioxide emissions and the level of their influence, respectively. Thus, we use (VAR) Vector Autoregression to explore the following hypotheses [29,30]:

Hypothesis 1: Environmental tax and fuel levy both have a negative impact on CO2 emissions, but its impact gradually decreases over time.

Hypothesis 1 can be analyzed by using the generalized impulse method [31]. Fig. 2 shows that the adverse impact of environmental tax on carbon dioxide emissions reached its maximum in the second phase, and then gradually diminished after the tenth period.

Hypothesis 2: The correlation between environmental tax and CO2 emissions is higher than the correlation between fuel levy and CO2 emissions.

Hypothesis 2 is explored using a generalized variance decomposition method [32]. Through the VAR model Table 3 shows the unexpected impact variation of LE\text{nvironmental Tax} and LF\text{uel levy} on LCO2, respectively. At the beginning, the percentage of LCO2 explained by L\text{environmental Tax} and LF\text{uel levy} is extremely small, when looking forward to the forecast of 10 periods. LF\text{uel levy} could explain only 0.11% of the variation of LCO2 prediction errors.

Comparatively, LE\text{nvironmental tax} could explain 1.41% of the variation of LCO2 prediction error, thus indicating that the environmental tax has a higher correlation with CO2 emissions.

Fuel levy is a kind of consumption tax. But even if fuel levy is levied, the market demand for oil products will not decrease significantly and thus the purpose of improving air pollution will not be achieved. Environmental tax is a tax levied on firms/polluters who directly produce air pollution, which conforms to the polluter-pays principle. According to our empirical analysis, we show that the collection of environmental protection tax is more effective than the collection of fuel tax in reducing air pollution and improving environmental quality.

Another, we show that air pollution is an important factor that causes the cost of environmental degradation. In this section, based on the theoretical models derived from Eq.(1) to (6), we use Kuznets curve to analyze the relationship between environmental degradation costs and economic variables in South Africa (some examples are Grossman et al., [33]; David, [16]; Sherry, [15]; Panayotou, [34]. Following is the establishment of a pollution emission loss model. Based on the KC curve, relevant variables are introduced.

\[\Delta \ln \text{Loss}_t = \beta_1 \ln \text{GDP}_t + \beta_2 (\ln \text{GDP}_t)^2 + \beta_3 \ln \text{EC}_t + \beta_4 \ln \text{POP}_t + \beta_5 \ln \text{NEX}_t + \beta_6 \ln \text{ELC}_t + \nu_t \] (10)

Eq(10), \ln \text{Loss} indicates that the cost of environmental degradation caused by air pollution, mainly attributed to carbon dioxide emissions. \ ln \text{CO2} is the logarithm of energy from coal measured in Mt, \ ln \text{GDP} is the logarithm of gross national product measured in billion 2010 USD, and \ (\ln \text{GDP})^2 using a quadratic form means that the cost rises at an increasing rate with the depreciation rate, \ ln \text{EC} is the logarithm of energy from coal measured in Mtoe, \ ln \text{POP} is the logarithm of population measured in millions,
InNEX is the logarithm of net export of energy measured in Mtoe, lnELC is the logarithm of electricity consumption measured in TWh. In Table 4, model 2 adds EC variable on the basis of model 1, while other models add different variables separately. To illustrate the relationship between environmental degradation costs and economic variables. The analyses can be stated formally as Hypothesis 3.

Hypothesis 3: In Table 4, model 1 expresses that not considering the effects of policies, the current economic development of South Africa has approached the left end of the inflection point of the Environmental Kuznets curve.

Table 2. Performance of Johansen cointegration test of LCO2, LEnvironmental tax and LFuellevy

<table>
<thead>
<tr>
<th>2006 to 2017</th>
<th>H0</th>
<th>H1</th>
<th>Statistic</th>
<th>5% critical value</th>
<th>Prob**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace test</td>
<td>None*</td>
<td></td>
<td>63.01094</td>
<td>29.79707</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>At most 1*</td>
<td></td>
<td>14.54274</td>
<td>15.49471</td>
<td>0.0692</td>
</tr>
<tr>
<td></td>
<td>y=0</td>
<td>y ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max-eigenvalue test</td>
<td>None*</td>
<td></td>
<td>48.46820</td>
<td>21.13162</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>At most 1*</td>
<td></td>
<td>9.422608</td>
<td>14.26460</td>
<td>0.2527</td>
</tr>
<tr>
<td></td>
<td>y=0</td>
<td>y ≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: γ denotes number of cointegrating equations; Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level.

Fig. 2 Impact of CO2, EnvironmentalTax and Fuellevy shock on CO2

Table 3. Variance decomposition of LCO2

<table>
<thead>
<tr>
<th>Period</th>
<th>S.E.</th>
<th>LCO2</th>
<th>LEnvironmentaltax</th>
<th>LFuellevy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.033721</td>
<td>100.0000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>0.033838</td>
<td>99.60687</td>
<td>0.360335</td>
<td>0.032794</td>
</tr>
<tr>
<td>3</td>
<td>0.033904</td>
<td>99.29391</td>
<td>0.648124</td>
<td>0.057963</td>
</tr>
<tr>
<td>4</td>
<td>0.033954</td>
<td>99.05782</td>
<td>0.866059</td>
<td>0.076126</td>
</tr>
<tr>
<td>5</td>
<td>0.033992</td>
<td>98.88001</td>
<td>1.030896</td>
<td>0.089098</td>
</tr>
<tr>
<td>6</td>
<td>0.034020</td>
<td>98.74621</td>
<td>1.320745</td>
<td>0.108980</td>
</tr>
<tr>
<td>7</td>
<td>0.034070</td>
<td>98.51387</td>
<td>1.374252</td>
<td>0.111875</td>
</tr>
</tbody>
</table>
Table 4. Regression analysis of environmental degradation cost

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(6.208422)</td>
<td>(0.696761)</td>
<td>(6.812107)</td>
<td>(6.148074)</td>
<td>(3.718701)</td>
<td>(1.769524)</td>
</tr>
<tr>
<td>(lnGDP)^2</td>
<td>-1.056245*</td>
<td>0.320307</td>
<td>-1.141393*</td>
<td>-1.074742*</td>
<td>-1.252545*</td>
<td>-0.517988</td>
</tr>
<tr>
<td></td>
<td>(-5.777492)</td>
<td>(-0.584613)</td>
<td>(-6.371491)</td>
<td>(-5.726069)</td>
<td>(-3.563494)</td>
<td>(-1.629599)</td>
</tr>
<tr>
<td>In EC</td>
<td>0.663706*</td>
<td>0.857076*</td>
<td>-0.513972***</td>
<td>-0.249946</td>
<td>-0.010070</td>
<td>0.000195</td>
</tr>
<tr>
<td></td>
<td>(3.110537)</td>
<td>(3.804819)</td>
<td>(-1.909694)</td>
<td>(-0.953709)</td>
<td>(-0.612448)</td>
<td>(0.014658)</td>
</tr>
<tr>
<td>ln POP</td>
<td>0.0049</td>
<td>0.000195</td>
<td>-0.133002</td>
<td>-0.367812***</td>
<td>-0.510447*</td>
<td>-0.367812***</td>
</tr>
<tr>
<td></td>
<td>(-0.656844)</td>
<td>(-0.953709)</td>
<td>(-1.850764)</td>
<td>(-1.850764)</td>
<td>(-2.850285)</td>
<td>(-1.850764)</td>
</tr>
<tr>
<td>ln NEX</td>
<td>1.498388*</td>
<td>1.190972*</td>
<td>1.323322*</td>
<td>1.574146*</td>
<td>1.314486*</td>
<td>-0.010070</td>
</tr>
<tr>
<td></td>
<td>(8.497288)</td>
<td>(5.395506)</td>
<td>(7.056437)</td>
<td>(7.341918)</td>
<td>(5.952779)</td>
<td>(-0.612448)</td>
</tr>
<tr>
<td>ln ELC</td>
<td>-0.510447*</td>
<td>-0.465848*</td>
<td>-0.565642***</td>
<td>-0.362335***</td>
<td>-0.565642***</td>
<td>-0.362335***</td>
</tr>
<tr>
<td></td>
<td>(-2.850285)</td>
<td>(-2.859872)</td>
<td>(-2.540726)</td>
<td>(-1.731689)</td>
<td>(-1.731689)</td>
<td>(-1.731689)</td>
</tr>
<tr>
<td>AR(1)</td>
<td>1.918295</td>
<td>1.842529</td>
<td>1.601369</td>
<td>1.872873</td>
<td>1.386572</td>
<td>2.214722</td>
</tr>
<tr>
<td>AR(2)</td>
<td>0.994294</td>
<td>0.980583</td>
<td>0.976190</td>
<td>0.995093</td>
<td>0.972923</td>
<td>0.984124</td>
</tr>
</tbody>
</table>

Notes: Variables in logarithmic form; *,**,*** stand for at 1%,5% and 10% significance level; The number in brackets is the t-statistic of the estimated parameter

In Table 4, we analyze the path of the coordinating the conflicts between economic growth and environmental pollution. Our empirical results show that not considering the effects of policies, the GDP level of South Africa is on the left of the inflection points of Kuznets curve. In Table 4, model 1 shows that the inflection point of the quadratic curve is 6.13, and the GDP of South Africa is 420 billion USD in 2016 based on 2010. The logarithmic value of 420 is 6.04. This proves that not considering the effects of policies, the current economic development of South Africa has approached the left end of the inflection point of the Kuznets curve. It means that increasing the domestic products including net exports can make the environment condition worse. Nevertheless, from the results of Table 4, model 2, we can see that the regression coefficient of lnEC, named as energy from coal, is 0.0049, reaching a significant level of 1%. Due to the positive sign of the coefficient, it shows that the increase of LnEC can dramatically lift the cost of environmental degradation to a certain extent. In Table 4, model 6 shows that the cost of environmental degradation is negatively correlated with InELC, electricity consumption in logarithmic form, reaching a significant level of 10%, which reveal that the source of electricity consumption not only came from coal-fired power generation, but also hydroelectric power, wind energy and natural gas.

5. DISCUSSION AND CONCLUSIONS

In comparison with traditional literature, the major findings of this study indicated the following results. Firstly, this paper compares the impact of environmental tax and fuel levy on improving air quality in South Africa's case, We find that environmental taxes are more effective than fuel taxes in improving air quality in South Africa. Secondly, we find that not considering the effects of government policies, the current economic development of South Africa has approached the left end of the inflection point of the Kuznets curve. It means that the further growth of economic scale will lead to the worsening of environmental quality. It is hoped that the formal analysis presented in this paper, even though it is based on a simple model, can be useful in improving developed and developing countries’ carbon
pollution, and considered by decision-makers as a call to take relevant methods to mitigate emissions level without harming the economic growth.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

26. Zheng DZ. Analysis of carbon emissions and economic growth based on spatial